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Abstract

This paper studies an eigenvalue problem associated with a linear parabolic equation and a coupled ordi-
nary differential equation. The existence and the uniqueness of the principal eigenvalue for this eigenvalue 
problem is first established. Then, the qualitative dependence of the principal eigenvalue with respect to 
the several parameters involved in the system is analyzed. Finally, these results are applied to a system in 
flowing habitats with a hydraulic storage zone and light limitation.
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1. Introduction

In this paper we focus our attention on the problem of analyzing the longitudinal distribu-
tion of the algae abundance in a riverine reservoir under various types of flows. Motivated by 
considering habitats as broad high-order rivers, or riverine reservoirs constructed by damming 
a river, we will propose a modification of the flow reactor model of Kung and Baltzis [17] to 
study this problem. It is well known that a rapid advective flow in these habitats can prevent 
persistence for realistic values of the parameters even of one single species. As a matter of fact, 
the presence of hydraulic storage zones in flowing water habitats might explain that persistence 
paradox [26]. Grover et al. [8] improved the original flow reactor model formulated by Kung and 
Baltzis [17] by adding a hydraulic storage zone with no spatial transport. Although the model of 
[8] is spatially heterogeneous, it is one-dimensional with a simple habitat geometry and transport 
processes. So, it is best suited for understanding longitudinal patterns along the flow axis. By 
using bifurcation theory as the main technical device, Grover et al. [8] successfully confirmed 
that a system with storage zones facilitates persistence of planktonic algae in flowing habitats.

The system of [8] is not only interesting biologically but also extremely challenging from the 
mathematical point of view, as some of its equations have no diffusion terms, while the remain-
ing do, and hence, the associated Poincaré maps cannot be compact, which makes mathematics 
harder. By the lack of compactness of the associated solution operator, to get satisfactory results 
one should previously overcome two basic difficulties. The first one arises when establishing the 
existence of a “global compact attractor”, as the classical Theorem 3.4.8 of Hale [10] cannot be 
applied without compactness. Very recently, Hsu, Wang and Zhao [13] were able to overcome this 
trouble by proving that the associated Poincaré map is asymptotically compact on any bounded 
set of the phase space to conclude that the system admits a global attractor, under the appropriate 
assumptions, through the abstract theory developed by Magal and Zhao [23]. The second hand-
icap one should overcome is ascertaining the linearized stability of the trivial and semi-trivial 
steady states of the model. However the linearized system at all these states is cooperative, the 
“compactness” of the flow is as well needed for applying the classical Krein–Rutman theory in 
order to infer the existence of a principal eigenvalue whose sign can provide with the local attrac-
tive, or repulsive, character of these steady states. Also this difficulty has been recently overcome 
by Hsu, Wang and Zhao in [13,14] through a generalized Krein–Rutman Theorem going back to 
Nussbaum [25]. But, in order to apply the abstract theory of [25], the authors of [13,14] had to 
impose some slightly severe restrictions on a number of coefficients of the model.

The first goal of this paper is removing all these restrictions by adopting a direct approach to 
the problem from an elliptic perspective, rather than the parabolic one of Hsu, Wang and Zhao 
[13,14], which seems more sophisticated technically. Besides the principal eigenvalue of the 
linearized system is an important threshold predicting the persistence of the species in a single 
population model, it also predicts the coexistence for the two population model. Therefore, it is a 
categorical imperative to analyze the dependence, or sensitivity, of the principal eigenvalue with 
respect to the most significant parameters of the model from the ecological point of view. Here 
relies the second goal of this paper.

Although, very recently, Wang and Zhao, [29, Th. 2.3], found some sharp abstract results 
on the existence of principal eigenvalues for an elliptic eigenvalue problem associated with a 
linear parabolic cooperative system with some zero diffusion coefficients, in order to establish 
the simplicity and strict dominance of the principal eigenvalue of (4.28) we had to combine 
our (crucial) Lemmas 2.1, 2.2, and 2.3 with [29, Th. 2.3], which is far from being an easy task 
from a technical point of view. Incidentally, as for most of the results of this paper the algebraic 
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simplicity and strict dominance of the principal eigenvalue do not seem to be really necessary, 
invoking to [29, Th. 2.3] to get out results might be unnecessary, though certainly [29, Th. 2.3]
strengthens the findings of this paper.

This paper is distributed as follows. In Section 2, we study an eigenvalue problem which 
plays an essential role in river ecology. Basically, we establish the existence and the unique-
ness of the principal eigenvalue of the eigenvalue problems associated with the system analyzed 
in [8]. Section 3 is devoted to the study of the qualitative dependence of this principal eigenvalue 
on the several parameters involved in the setting of the model. In Section 4, we incorporate the 
factor of vertical variation into the system of [8] to study a generalized system with light lim-
itation. At the bright shared by our analysis, in Section 5 we will discuss the combined effects 
of diffusion, advection, depth and length of the river, exchanging rate between the main channel 
and the storage zones, as well as cross-sectional areas ratios, on the persistence of the single 
species.

2. A pivotal eigenvalue problem

In river ecology, the following linear parabolic problem of cooperative type plays a crucial 
role

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Z
∂t

= δ ∂2Z

∂x2 − ν ∂Z
∂x

+ α(ZS − Z) + β1(x)Z,
∂ZS

∂t
= −α A

AS
(ZS − Z) + β2(x)ZS,

0 < x < L, t > 0,

νZ(0, t) − δ ∂Z
∂x

(0, t) = 0, ∂Z
∂x

(L, t) = 0, t > 0,

Z(x,0) = Z0(x) ≥ 0, ZS(x,0) = Z0
S(x) ≥ 0, 0 < x < L,

(2.1)

where β1, β2 ∈ C[0, L] are given continuous functions, δ, α, ν, A, AS and L are positive pa-
rameters, and Z0, Z0

S stand for the initial conditions (the reader is sent to [8,14] for any further 
required detail). The set of pairs (ψ, ϕ) for which

Z(x, t) = e−λtψ(x), ZS(x, t) = e−λtϕ(x),

solve (2.1) for some λ ∈R satisfies the eigenvalue problem

⎧⎪⎨
⎪⎩

−δψ ′′ + νψ ′ − β1(x)ψ + αψ − αϕ = λψ,

−α A
AS

ψ + (α A
AS

− β2(x))ϕ = λϕ,
0 < x < L,

νψ(0) − δψ ′(0) = 0, ψ ′(L) = 0.

(2.2)

Consequently, studying the existence, the uniqueness and the sensitivity properties of the princi-
pal eigenvalue of (2.2) is imperative to analyze the dynamics of (2.1). By a principal eigenvalue 
it is meant a value of λ ∈ R for which the corresponding solution of (2.2) exists and it satisfies 
ψ > 0 and ϕ > 0 in [0, L].

As the second equation of (2.2) yields

ϕ(x) = −α A
AS

λ + β2(x) − α A
ψ(x) ∀ x ∈ [0,L], (2.3)
AS
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and αA/AS > 0, in order to guarantee that ϕ is well defined and that ϕ � 0, in the sense that 
ϕ(x) > 0 for all x ∈ [0, L], throughout this paper we impose that

λ < α
A

AS

− β2(x) for all x ∈ [0,L]. (2.4)

Moreover, we also require

α
A

AS

− β2(x) > 0 for all x ∈ [0,L] (2.5)

and denote

‖β2‖∞ := max
x∈
̄

β2(x), Q := A/AS, λc := αQ − ‖β2‖∞. (2.6)

By the continuity of β2, it follows from (2.4) and (2.5) that

λ < λc and λc := αQ − ‖β2‖∞ > 0. (2.7)

Substituting (2.3) into the first equation of (2.2), it is apparent that, under condition (2.4), λ is a 
principal eigenvalue of (2.2) if, and only if, there exists ψ > 0 such that

{
−δψ ′′ + νψ ′ − β1ψ + αψ + α2Q

λ+β2−αQ
ψ = λψ in (0,L),

νψ(0) − δψ ′(0) = 0, ψ ′(L) = 0.
(2.8)

In such case, thanks to [20, Th. 7.10], one has that ψ � 0, in the sense that

ψ(x) > 0 for all x ∈ [0,L]. (2.9)

Any of those functions ψ ’s, which are unique up to a multiplicative constant, is usually referred 
to as the principal eigenfunction associated with λ. The main result of this section establishes 
the existence and the uniqueness of the principal eigenvalue of this problem. It can be stated as 
follows. By a principal eigenvalue it is meant a value of λ associated with it there is a positive 
eigenfunction, ψ > 0.

Theorem 2.1. Suppose λc > 0 and there are r0 > 0, M > 0 and x∗ ∈ [0, L] such that β2(x∗) =
‖β2‖∞ and

|β2(x) − β2(x∗)| ≤ M|x − x∗| for all x ∈ [x∗ − r0, x∗ + r0] ∩ [0,L]. (2.10)

In other words, β2 is locally Lipschitz at some point x∗ ∈ β−1
2 (‖β2‖∞). Then, (2.2) possesses a 

unique principal eigenvalue λp ∈ (−∞, λc). Moreover,

signλp = signλπ ,
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where λπ stands for the (unique) principal eigenvalue of

{
−δψ ′′ + νψ ′ − β1ψ + αψ + α2Q

β2−αQ
ψ = λψ in (0,L),

νψ(0) − δψ ′(0) = 0, ψ ′(L) = 0.
(2.11)

Furthermore, λp is algebraically simple and strictly dominant.

The rest of the section is devoted to the proof of Theorem 2.1. First, we will deliver two 
technical lemmas needed in the proof. Then, we will complete it.

2.1. Three auxiliary lemmas of technical nature

Lemma 2.1. For any given r > 0, δ1 > 0, δ2 > 0 and ε > 0, let σ1(ε) denote the principal 
eigenvalue of

⎧⎨
⎩−δ1φ

′′(x) − δ2

ε + |x| φ(x) = σφ(x), x ∈ (−r, r),

φ(−r) = φ(r) = 0.

(2.12)

Then σ1(ε) < −δ2/(2r) for sufficiently small ε > 0.

Proof. By the monotonicity of the principal eigenvalue with respect to the potential (e.g., 
[19, Prop. 3.2], or [20, Prop. 8.3]), σ1(ε) is increasing in ε. Moreover, σ1(ε) < δ1[π/(2r)]2 for 
all ε > 0. Assume, by contradiction, that there is a sequence εn ↓ 0 such that σ1(εn) ↓ σω ≥
−δ2/(2r) as n → ∞. Then,

− δ2

2r
≤ σω ≤ σ1(εn) ≤ δ1

( π

2r

)2
, n ≥ 1.

Subsequently, for each n ≥ 1, we denote by φn � 0 the principal eigenfunction associated with
σ1(εn) normalized so that 

∫ r

−r
(φ′

n)
2 = 1. Then,

⎧⎨
⎩−δ1φ

′′
n(x) =

(
δ2

εn + |x| + σ1(εn)

)
φn(x), x ∈ (−r, r),

φn(−r) = φn(r) = 0.

(2.13)

Multiplying the equation by φn and integrating by parts in (−r, r), we find that

r∫
−r

(
δ2

εn + |x| + σ1(εn)

)
φ2

n(x) dx = δ1 ∀ n ≥ 1. (2.14)

By the Sobolev imbeddings (see, e.g., [20, Cor. 4.1]), the sequence {φn}n≥1 is bounded in the 
space of Hölder continuous functions C0,1/2[−r, r]. Moreover, by the theorem of Rellich and 
Kondrachov (see, e.g., [20, Th. 4.5]), for every β < 1/2, the imbedding H 1(−r, r) ↪→ C0,β [−r, r]
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is compact and, hence, there exists φω ∈ C0,1/4[−r, r] such that, along some subsequence, rela-
beled by n, one has that

lim
n→∞‖φn − φω‖C0,1/4[−r,r] = 0. (2.15)

In particular, φn → φω uniformly in [−r, r] as n → ∞.
On the other hand, as soon as 0 < εn < r , we have that

δ2

εn + |x| + σ1(εn) >
δ2

2r
+ σ1(εn) ≥ δ2

2r
+ σω ≥ 0, |x| ≤ r, (2.16)

and, consequently, thanks to (2.14), the functions

fn :=
(

δ2

εn + | · | + σ1(εn)

)
φ2

n, n ≥ 1,

satisfy fn ∈ L1(−r, r), fn ≥ 0 for sufficiently large n, and 
∫ r

−r
fn = δ1 for all n ≥ 1. Thus, 

according to the Fatou lemma (see, e.g., [5, Lem. IV.1]),

f := lim inf
n→∞ fn =

(
δ2

| · | + σω

)
φ2

ω ∈ L1(−r, r) (2.17)

and

0 ≤
r∫

−r

(
δ2

|x| + σω

)
φ2

ω(x) dx ≤ δ1. (2.18)

Suppose φω(0) > 0. Then, by continuity, there exists η > 0 such that φω(x) > φω(0)/2 for all 
x ∈ [−η, η] and hence, since

δ2

|x| + σω ≥ δ2

r
+ σω >

δ2

2r
+ σω ≥ 0,

we find that

r∫
−r

(
δ2

|x| + σω

)
φ2

ω(x) dx ≥ (φω(0)/2)2

⎡
⎣δ2

η∫
−η

dx

|x| + 2ησω

⎤
⎦= ∞,

which contradicts (2.18). Therefore,

lim
n→∞φn(0) = φω(0) = 0. (2.19)

On the other hand, according to (2.13) and (2.16), we find that φ′′
n(x) < 0 for all x ∈ (−r, r) and, 

hence, x �→ φ′
n(x) is decreasing in [−r, r]. Also, by symmetry, φ′

n(−r) = −φ′
n(r) and φ′

n(0) = 0. 
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As, for every η ∈ (0, r), the right hand side of Eq. (2.13) approximates (δ2/| · | + σω)φω ∈
C([−r, r] \ {0}) uniformly in [−r, −η] ∪ [η, r], for each η ∈ (0, r) there exists a constant Cη > 0
such that

|φ′′
n | ≤ Cη in [−r,−η] ∪ [η, r] ∀ n ≥ 1.

Thus, combining the theorem of Ascoli and Arzela with a diagonal scheme, it becomes apparent 
that there exists ψω ∈ C([−r, r] \ {0}), such that, along some subsequence, labeled again by n, 
we have that

lim
n→∞φ′

n = ψω in Cloc([−r, r] \ {0}).

Necessarily, ψω = φ′
ω in [−r, r] \{0} and, consequently, much like φ′

n, n ≥ 1, we find that φ′
ω ≥ 0

in [−r, 0) and φ′
ω ≤ 0 in (0, r]. Thus, (2.19) implies that φω = 0 in [−r, r] and, consequently, 

ψω = φ′
ω = 0 in [−r, r] \ {0}. Therefore,

lim
n→∞φ′

n = 0 in Cloc([−r, r] \ {0}). (2.20)

As we already know that, for every x ∈ [−r, r], the following inequalities hold

φ′
n(−r) ≥ φ′

n(x) ≥ φ′
n(r),

(2.20) implies that

0 ≤
r∫

−r

(φ′
n)

2 ≤ 2r(φ′
n(r))

2 �→ 0 as n → ∞,

which contradicts 
∫ r

−r
(φ′

n)
2 = 1 and ends the proof. �

Lemma 2.2. For any given r > 0, δ1 > 0, δ2 > 0, ε > 0 and κ �= 0, let σ1(ε) denote the principal 
eigenvalue of

⎧⎨
⎩−δ1φ

′′(x) − δ2

ε + |x|φ(x) = σφ(x), x ∈ (−r,0),

φ(−r) = 0, φ′(0) + κφ(0) = 0.

(2.21)

Then, σ1(ε) < −δ2/(2r) for sufficiently small ε > 0.

Proof. We will adapt the proof of Lemma 2.1. By [2, Prop. 3.3] (or [20, Prop. 8.3]), the map 
ε �→ σ1(ε), ε > 0, is increasing. Assume, by contradiction, that

σω := limσ1(ε) ≥ − δ2
.

ε↓0 2r
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Then,

− δ2

2r
≤ σω ≤ σ1(ε) for all ε > 0.

Let φε � 0 be the principal eigenfunction associated with σ1(ε) normalized so that

‖φε‖H 1(−r,0) = 1, ε > 0. (2.22)

Obviously, as soon as ε ∈ (0, r), we have that

−δ1φ
′′
ε (x) =

(
δ2

ε + |x| + σ1(ε)

)
φε(x) > 0 ∀ x ∈ (−r,0)

and, hence, φ′
ε is decreasing in [−r, 0] for all ε ∈ (0, r). As in the proof of Lemma 2.1, by 

the Sobolev embeddings, there is a constant C > 0 such that ‖φε‖C1/2[−r,0] ≤ C for all ε > 0. 
Therefore, by compactness, there exist φω ∈ C1/4[−r, 0] and a subsequence 0 < εn < r , n ≥ 1, 
such that εn → 0 and φn := φεn → φω in C1/4[−r, 0] as n → ∞. By adapting the proof of 
Lemma 2.1, it is apparent that φω ∈ C2[−r, 0) and that, along some subsequence, relabeled by n, 
we have that

lim
n→∞φn = φω in C2

loc[−r,0) ∩ C1/4[−r,0]. (2.23)

As

−δ1φ
′′
ω(x) =

(
δ2

|x| + σω

)
φω(x) ∀ x ∈ (−r,0) (2.24)

and φω ≥ 0, either φω = 0, or φω(x) > 0 for all x ∈ (−r, 0). Indeed, if there exists x0 ∈ (−r, 0)

such that φω(x0) = 0, necessarily φ′
ω(x0) = 0 and, by the existence and the uniqueness of solution 

for the associated Cauchy problem, we can infer that φω = 0 in [−r, 0]. Therefore, φω(x) > 0 for 
all x ∈ (−r, 0) if φω �= 0. Moreover, in such case, since

φω(−r) = lim
n→∞φn(−r) = 0,

we also have that φ′
ω(−r) > 0.

Suppose φω = 0. Then, φ′
ω = 0 and, since

φ′
n(−r) ≥ φ′

n(x) ≥ φ′
n(0) = −κφn(0)

for all n ≥ 1 and −r < x < 0, it follows from (2.23) that φ′
n → 0 uniformly in [−r, 0] and, 

hence, φn → 0 in C1[−r, 0] as n → ∞, which contradicts (2.22). Consequently, φω(x) > 0 for 
all x ∈ (−r, 0).

Suppose φω(0) = 0. Then, as φ′′
n < 0 in (−r, 0), for any −r < x < y < 0, we have that

φ′ (−r) ≥ φ′ (x) ≥ φ′ (y) ≥ φ′ (0) = −κφn(0)
n n n n
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and letting n → ∞ yields

φ′
ω(−r) ≥ φ′

ω(x) ≥ φ′
ω(y) ≥ 0.

Thus,

φ′
ω(0) := lim

x↓0
φ′

ω(x) ≥ 0

is well defined, which entails φω ∈ C1[−r, 0]. If φ′
ω(0) = 0, then (2.24) implies φω = 0, which is 

impossible. Therefore, φ′
ω(0) > 0 and substituting the asymptotic expansion

φω(x) = φ′
ω(0)x + o(x) as x ↑ 0,

in (2.24), we find that

−δ1φ
′′
ω(x) = −δ2φ

′
ω(0) + o(1) as x ↑ 0,

which entails φ′′
ω(x) > 0 for sufficiently small x > 0; also impossible. This shows that, necessar-

ily, φω(0) > 0. By continuity, there is η ∈ (0, r) such that

φω(x) ≥ φω(0)/2 ∀ x ∈ [−η,0]. (2.25)

On the other hand, multiplying the φn-equation by φn and integrating in [−r, 0], we find that

δ1κφ2
n(0) + δ1

0∫
−r

(φ′
n)

2 =
0∫

−r

(
δ2

εn + |x| + σ1(εn)

)
φ2

n(x)dx. (2.26)

Thus, according to (2.22) and letting n → ∞ in (2.26), we find from the Fatou lemma that

0 ≤
0∫

−r

(
δ2

|x| + σω

)
φ2

ω(x)dx ≤ δ1κφ2
ω(0) + δ1.

However,

0∫
−r

(
δ2

|x| + σω

)
φ2

ω(x)dx ≥
0∫

−η

(
δ2

|x| − δ2

2r

)
1

4
φ2

ω(0)dx = ∞,

which is a contradiction. The proof is complete. �
Naturally, by performing the change of variable y := −x, Lemma 2.2 also provides us with 

the next result:
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Lemma 2.3. For any given r > 0, δ1 > 0, δ2 > 0, ε > 0 and κ �= 0, let σ1(ε) denote the principal 
eigenvalue of

⎧⎨
⎩−δ1φ

′′(x) − δ2

ε + |x|φ(x) = σφ(x), x ∈ (0, r),

φ′(0) − κφ(0) = 0, φ(r) = 0.

(2.27)

Then, σ1(ε) < −δ2/(2r) for sufficiently small ε > 0.

2.2. Proof of Theorem 2.1

Throughout this paper, given a, b, pa, pb, qa, qb ∈ R with a < b, a linear second order uni-
formly elliptic operator L in [a, b] and the boundary operator B : C[a, b] → R

2 defined by

Bξ :=
{

pa ξ(a) + qa ξ ′(a),

pb ξ(b) + qb ξ ′(b),
ξ ∈ C[a, b],

we denote by σ1[L, B, (a, b)] the principal eigenvalue of

{
Lψ = σψ, in (a, b),

Bψ = 0, on {a, b} = ∂(a, b).

When pa = pb = 1 and qa = qb = 0, we simply denote D :=B (Dirichlet boundary conditions). 
Similarly, if pa = pb = 0 and qa = qb = 1, we denote N :=B (Neumann boundary conditions). 
Making the special choices

a = 0, b = L, Bξ :=
{

νξ(0) − δξ ′(0),

ξ ′(L),
ξ ∈ C[0,L], (2.28)

L := −δD2 + νD − β1, D := d/dx, (2.29)

and introducing the function F : (−∞, λc) → R defined by

F(λ) := σ1

[
L+ α + α2Q

λ + β2(x) − αQ
,B, (0,L)

]
, (2.30)

to complete the proof of Theorem 2.1, we should show the existence of a unique λp ∈ (−∞, λc)

such that

F(λp) = λp. (2.31)

As λπ = F(0), the second assertion of the theorem establishes that

signλp = signF(0).

Thanks to the monotonicity of the principal eigenvalue with respect to the potential (see, e.g., 
[20, Prop. 8.3]), the map λ �→ F(λ) is decreasing. Moreover, the change of variable
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φ(x) := e− ν
2δ

xψ(x), x ∈ [0,L],

transforms (2.8) into the equivalent eigenvalue problem

{
−δφ′′ + ν2

4δ
φ − β1(x)φ + αφ + α2Q

λ+β2(x)−αQ
φ = λφ, 0 < x < L,

νφ(0) − 2δφ′(0) = 0, νφ(L) + 2δφ′(L) = 0,
(2.32)

where the drift term of the differential operator has been removed. Thus, setting

Lt := −δD2 + ν2

4δ
− β1, Bt ξ :=

{
νξ(0) − 2δξ ′(0),

νξ(L) + 2δξ ′(L),
ξ ∈ C[0,L],

by the uniqueness of the principal eigenvalue (see, e.g., [20, Th. 7.7]), it becomes apparent that

F(λ) = σ1

[
Lt + α + α2Q

λ + β2(x) − αQ
,Bt , (0,L)

]

for all λ < λc. To carry out the technical details of the proof of the theorem, we will distinguish 
three different cases, according to the nature of β2(x).

Case I: There are 0 ≤ a < b ≤ L such that β2(x) = ‖β2‖∞ for all x ∈ [a, b]. By the continuous 
dependence of the principal eigenvalue with respect to the potential (see, e.g., Cano-Casanova 
and López-Gómez [2, Cor. 3.4], or [20, Cor. 8.1]), it follows that

lim
λ↓−∞F(λ) = σ1 [Lt ,Bt , (0,L)] + α. (2.33)

Moreover, according to Proposition 8.1, Corollary 8.2 and Proposition 8.3 of [20], it becomes 
apparent that

F(λ) = σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,Bt , (0,L)

]
≤ σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,D, (0,L)

]
≤ σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,D, (a, b)

]
= σ1

[
Lt + α + α2Q/(λ + ‖β‖∞ − αQ) ,D, (a, b)

]
.

Thus, we find from (2.7) that

F(λ) ≤ σ1

[
Lt + α + α2Q

λ − λc

,D, (a, b)

]
for all λ < λc

and therefore

lim F(λ) = −∞. (2.34)

λ↑λc
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Consequently, as the map λ �→ F(λ) is decreasing, there is a unique λ, denoted by λp , such that 
F(λp) = λp . Moreover, as λc > 0, it becomes apparent that λp > 0 if F(0) > 0, whereas λp < 0
if F(0) < 0 and λp = 0 if F(0) = 0, which ends the proof of (2.31) in this case.

Case II: x∗ ∈ (0, L). According to (2.10), we can take 0 < r0 < min{x∗, L − x∗} such that

β2(x) − β2(x∗) = β2(x) − ‖β2‖∞ ≥ −M|x − x∗|, x ∈ (x∗ − r0, x∗ + r0).

Thus, denoting Jr := (x∗ − r, x∗ + r), by the properties of the principal eigenvalue, we obtain 
that, for every r ∈ (0, r0) and λ < λc,

F(λ) = σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,Bt , (0,L)

]
≤ σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,D, (0,L)

]
≤ σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,D, Jr

]
≤ σ1

[
Lt + α + α2Q/(λ + ‖β2‖∞ − M|x − x∗| − αQ) ,D, Jr

]
= σ1

[
Lt + α − α2Q/(λc − λ + M|x − x∗|) ,D, Jr

]
.

Thus, making the change of variable y := x − x∗, Lemma 2.1 implies that

F(λ) ≤ ν2

4δ
+ ‖β1‖∞ + α + σ1

[
−δD2 − α2Q

λc − λ + M|y| ,D, (−r, r)

]

<
ν2

4δ
+ ‖β1‖∞ + α − α2Q

2Mr

for all r ∈ (0, r0) and λ < λc sufficiently close to λc. Therefore, as this estimate is valid for 
arbitrarily small r > 0, (2.34) also holds in this case and the proof of (2.31) is complete if x∗ ∈
(0, L).

Case III: x∗ ∈ {0, L}. Suppose x∗ = L, let r0 ∈ (0, L) and M > 0 be such that

β2(x) − β2(L) = β2(x) − ‖β2‖∞ ≥ M(x − L) for all x ∈ [L − r0,L],
and consider, for every 0 < r < r0,

Jr := (L − r,L), B0ξ :=
{

ξ(L − r),

νξ(L) + 2δξ ′(L),
ξ ∈ C[L − r,L].

Then, according to [20, Pr. 8.2],

F(λ) = σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,Bt , (0,L)

]
≤ σ1

[
Lt + α + α2Q/(λ + β2(x) − αQ) ,B0, (L − r,L)

]
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≤ σ1

[
Lt + α + α2Q/(λ + ‖β2‖∞ − M|x − L| − αQ) ,B0, (L − r,L)

]
= σ1

[
Lt + α − α2Q/(λc − λ + M|x − L|) ,B0, (L − r,L)

]
.

Thus, by performing the change of variable y := x − L, we find from the monotonicity of the 
principal eigenvalue with respect to the potential that

F(λ) ≤ ν2

4δ
+ ‖β1‖∞ + α + σ1

[
−δD2 − α2Q

λc − λ + M|y| , B̃0, (−r,0)

]
,

where

B̃0ξ :=
{

ξ(−r),

νξ(0) + 2δξ ′(0),
ξ ∈ C[−r,0].

Therefore, owing to Lemma 2.2, we conclude that

F(λ) ≤ ν2

4δ
+ ‖β1‖∞ + α − α2A

2ASMr

for sufficiently small r ∈ (0, r0) and λc − λ. Consequently, (2.34) holds true and the proof of 
(2.31) is also concluded in this case.

When x∗ = 0, the previous argument can be easily adapted to complete the proof of (2.31) by 
using Lemma 2.3, instead of Lemma 2.2.

Lastly, we will use [29, Th. 2.3] to complete the proof of the theorem. To this end, we consider 
the next one-parameter family of linear operators on C[0, L]

L� := δ
∂2

∂x2
− ν

∂

∂x
+ (β1(x) − α) +

α2A
AS

� − (β2(x) − α A
AS

)

defined for

� > ‖β2‖∞ − α
A

AS

.

By choosing �p := −λp , from (2.31) it becomes apparent that there exists ψp > 0 such that

L�pψp = �pψp ≥ �pψp.

Therefore, applying [29, Th. 2.3(i)] ends the proof of Theorem 2.1.

Remark 2.1. It is worth pointing out that one can also use our Lemmas 2.1, 2.2, and 2.3, as well 
as some of the ideas of the proof of [29, Le. 4.1] to construct another suitable �0 and ψ0 ≥ 0, �≡ 0
such that

L�0ψ0 ≥ �0ψ0.

Also in this case, [29, Theorem 2.3] ends the proof of Theorem 2.1.
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Remark 2.2. Although the most pioneering ideas for establishing the existence and the unique-
ness of the principal eigenvalue in the context of linear elliptic cooperative systems through the 
existence of a positive supersolution, ψ0, seem to go back to [21, Th. 2.1(C1)], which was pub-
lished 21 years ago, one should recognize that their adaptation to cover the more general setting 
of [29] is far from being an easy task, besides extremely useful.

3. Dependence of λp on the parameters

Throughout this section we always assume that (2.5) holds and work under the general as-
sumptions of Theorem 2.1. Consequently, the eigenvalue problem (2.2), or, equivalently, (2.8), 
possesses a unique principal eigenvalue λp. Naturally, λp depends on the several parameters and 
functions involved in the setting of these eigenvalue problems. Namely, ν, α, β1(x), β2(x), Q, 
δ and L. The main goal of this section is analyzing how varies λp as some of these parameters 
change. By construction, λp is the unique value of

λ < λc := αQ − ‖β2‖∞

for which the eigenvalue problem

⎧⎨
⎩−δψ ′′ + νψ ′ + (α − β1)ψ + α2Q

λ − λc + β2(x) − ‖β2‖∞
ψ = λψ,

δψ ′(0) − νψ(0) = 0, ψ ′(L) = 0,

(3.1)

admits a positive eigenfunction ψ > 0. By (2.7), λc > 0.
As the change of variable φ(x) := e− ν

2δ
xψ(x), x ∈ [0, L], transforms (3.1) into the equivalent 

eigenvalue problem (2.32), it is very appropriate to introduce the following potential

V := V (λ,α,β1, β2,Q) = β1 + λ − α(λ + β2)

λ + β2 − αQ
. (3.2)

In terms of V , the problem (2.32) can be expressed as⎧⎨
⎩−δφ′′ + ν2

4δ
φ = V (λ,α,β1, β2,Q)φ,

2δφ′(0) − νφ(0) = 0, 2δφ′(L) + νφ(L) = 0.

(3.3)

As V is strictly increasing in λ, α, β1 and β2, and strictly decreasing in Q, the next monotonicity 
result for the principal eigenvalue λp = λp(ν, α, β1, β2, Q) holds.

Theorem 3.1. Suppose

ν̂ ≥ ν ≥ 0, Q̂ ≥ Q, α̂ ≤ α, β̂1 ≤ β1, β̂2 ≤ β2. (3.4)

Then,

λ̂p := λp(ν̂, α̂, β̂1, β̂2, Q̂) ≥ λp := λp(ν,α,β1, β2,Q).

Moreover, λ̂p > λp if some of the inequalities of (3.4) is strict.
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Proof. Suppose, on the contrary, that λ̂p < λp . Then, setting

W := V (λp,α,β1, β2,Q), Ŵ := V (λ̂p, α̂, β̂1, β̂2, Q̂),

we find from the monotonicity properties of V that Ŵ < W . Moreover, if we denote by φ > 0 and 
φ̂ > 0 the principal eigenfunctions associated with λp and λ̂p , normalized so that ‖φ‖∞ = ‖φ̂‖∞, 
then

⎧⎨
⎩−δφ′′ + ν2

4δ
φ = Wφ,

2δφ′(0) − νφ(0) = 0, 2δφ′(L) + νφ(L) = 0,

(3.5)

and

⎧⎨
⎩−δφ̂′′ + ν̂2

4δ
φ̂ = Ŵ φ̂,

2δφ̂′(0) − ν̂φ̂(0) = 0, 2δφ̂′(L) + ν̂φ̂(L) = 0.

(3.6)

Hence, multiplying the φ-equation by φ̂, the φ̂-equation by φ, subtracting the resulting identities 
and integrating in (0, L), yields

L∫
0

(W − Ŵ )φφ̂ = ν2 − ν̂2

4δ

L∫
0

φφ̂ + δ
[
φφ̂′ − φ′φ̂

]x=L

x=0

= ν2 − ν̂2

4δ

L∫
0

φφ̂ + ν − ν̂

2

[
φ(L)φ̂(L) + φ(0)φ̂(0)

]
.

As Ŵ < W , φ � 0 and φ̂ � 0, the left hand side is positive and, hence,

ν2 − ν̂2

4δ

L∫
0

φφ̂ + ν − ν̂

2

[
φ(L)φ̂(L) + φ(0)φ̂(0)

]
> 0. (3.7)

On the other hand, we have that 
∫ L

0 φφ̂ > 0, φ(L) > 0, φ̂(L) > 0, φ(0) > 0 and φ̂(0) > 0. Indeed, 
if φ(L) = 0, it follows from (3.5) that φ′(L) = 0 and, hence, by the uniqueness of solution for 
the associated Cauchy problem, φ = 0 in [0, L]. Similarly, φ = 0 (resp. φ̂ = 0) if φ(0) = 0 (resp. 
φ̂(0) = 0, or φ̂(L) = 0). Therefore, we find from (3.7) that ν > ν̂, which contradicts the choice 
ν̂ ≥ ν. Consequently, λp ≤ λ̂p .

Now, suppose that some of the inequalities of (3.4) is strict, but λ̂p = λp . Precisely, suppose 
some of the last four inequalities of (3.4) is strict. Then, Ŵ < W and, hence, (3.7) holds. Thus, 
ν > ν̂, which contradicts the first requirement of (3.4). Consequently, Q̂ = Q, α̂ = α, β̂1 = β1
and β̂2 = β2. Therefore, W = Ŵ and, hence,
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ν2 − ν̂2

4δ

L∫
0

φφ̂ + ν − ν̂

2

[
φ(L)φ̂(L) + φ(0)φ̂(0)

]
= 0,

which implies ν = ν̂. This ends the proof. �
As a consequence from Theorem 3.1, the next two results hold. In the first one, λp is regarded 

as a function of the parameter Q = A/AS .

Theorem 3.2. The map Q �→ λp(Q) is increasing and

lim
Q↑∞λp(Q) = σ1[L,B, (0,L)], (3.8)

where L and B are given by (2.29) and (2.28), respectively.

Proof. According to Theorem 3.1, λp(Q) is increasing. Moreover, due to (2.33), we have that

λp(Q) = F(λp(Q)) ≤ σ1[Lt ,Bt , (0,L)] + α.

Hence,

λp(∞) := lim
Q↑∞λp(Q) ∈ R

is well defined. In addition, by definition, we have that

λp(Q) = F(λp(Q)) = σ1

[
L+ α + α2Q

λp(Q) + β2 − αQ
,B, (0,L)

]

for all Q > 0. By letting Q → ∞ in this identity, (3.8) holds, by the continuous dependence of 
σ1[L + P, B, (0, L)] with respect to P (see [20, Cor. 8.1]). �

In the next result, the principal eigenvalue λp is regarded as a function of the parameter α, 
and it will be denoted by λp(α).

Theorem 3.3. The map α �→ λp(α) is decreasing and satisfies

lim
α↓0

λp(α) = σ [L,B, (0,L)]. (3.9)

lim
α↑∞λp(α) = Q

Q + 1
σ1
[
L− β2/Q,B, (0,L)

]
, (3.10)

where L and B are given by (2.29) and (2.28), respectively.

Proof. The identity (3.9) is obvious. According to Theorem 3.1, α �→ λp(α) is decreasing. Thus,

λ∗
p := lim λp(α) ∈ [−∞,∞)
α↑∞
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is well defined. Suppose λ∗
p ∈R. Then, letting α ↑ ∞ in the next identity

λp(α) = σ1

[
L+ α(λp(α) + β2)

λp(α) + β2 − αQ
,B, (0,L)

]
, α > 0, (3.11)

we find from [20, Cor. 8.1] that

λ∗
p = σ1

[
L− (λ∗

p + β2)/Q,B, (0,L)
]

= σ1
[
L− β2/Q,B, (0,L)

]− λ∗
p/Q,

which implies

λ∗
p = Q

Q + 1
σ1
[
L− β2/Q,B, (0,L)

]
, (3.12)

and ends the proof of (3.10). As getting the appropriate lower estimates for λp(α) as α ↑ ∞
seems rather involved, we will prove the result by combining the uniqueness of λp(α) with the 
implicit function theorem. Note that, setting

μp(ε) = λp(α), ε = 1/α, ε > 0,

the identity (3.11) can be equivalently expressed as

μp(ε) = σ1

[
L+ μp(ε) + β2

ε[μp(ε) + β2] − Q
,B, (0,L)

]
, ε > 0. (3.13)

Thus, it is natural to introduce the map

G(μ, ε) := σ1

[
L+ μ + β2

ε(μ + β2) − Q
,B, (0,L)

]
− μ, ε(μ + ‖β2‖∞) < Q.

According to Theorem 2.6 on page 377 of Kato [15], (L + μ+β2
ε(μ+β2)−Q

, B, (0, L)) is a holomor-
phic family of type (A) in μ and ε, within the region ε(μ + ‖β2‖∞) < Q. Therefore, due to 
Remark 2.9 on page 379 of [15], all the eigenvalues of (L + μ+β2

ε(μ+β2)−Q
, B, (0, L)) vary analyti-

cally with respect to μ and ε, as all of them are algebraically simple. Moreover,

G(λ∗
p,0) = σ1

[
L− (λ∗

p + β2)/Q,B, (0,L)
]

− λ∗
p = 0.

Suppose ∂μG(λ∗
p, 0) �= 0. Then, thanks to the implicit function theorem, there exist ε0 > 0 and a 

(unique) analytic map μ : (−ε0, ε0) → R such that

μ(0) = λ∗
p, G(μ(ε), ε) = 0 for all ε ∈ (−ε0, ε0),

and μ = μ(ε) if G(μ, ε) = 0 with (μ, ε) ∼ (λ∗
p, 0). By the uniqueness of λp(α), necessarily 

μ(ε) = λp(α), ε = 1/α, for sufficiently large α. This would end the proof of the theorem, because 
μ(0) = λ∗

p . Consequently, to complete the proof it suffices to show that ∂μG(λ∗
p, 0) �= 0.
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Let ϕ(μ, ε) � 0 denote the principal eigenfunction associated with G(μ, ε) + μ, normalized 
so that 

∫ L

0 ϕ2(μ, ε) = 1. Then,

(
L+ μ + β2

ε(μ + β2) − Q

)
ϕ(μ, ε) = (G(μ, ε) + μ)ϕ(μ, ε) (3.14)

in (0, L) and Bϕ(μ, ε) = 0. According to Remark 2.9 on page 379 of Kato [15], μ �→ ϕ(μ, ε)
is analytic. Thus, differentiating (3.14) with respect to μ, particularizing the resulting identity at 
(μ, ε) = (λ∗

p, 0) and rearranging terms yields

(
L− λ∗

p + β2

Q
− λ∗

p

)
∂μϕ(λ∗

p,0) =
[
Q−1 + ∂μG(λ∗

p,0) + 1
]
ϕ(λ∗

p,0) (3.15)

in (0, L) and B∂μϕ(λ∗
p, 0) = 0. By (3.12), σ1[M, B, (0, L)] = 0, where

M := L− (λ∗
p + β2)/Q − λ∗

p.

Let (M∗, B∗, (0, L)) denote the adjoint of (M, B, (0, L)) and let ϕ∗ � 0 be the principal eigen-
function associated with σ1[M∗, B∗, (0, L)] = 0 normalized so that 

∫ L

0 ϕ∗ϕ(λ∗
p, 0) = 1. Then, 

multiplying (3.15) by ϕ∗ and integrating, we find that

∂μG(λ∗
p,0) = −1 − 1/Q < 0,

which concludes the proof. �
Subsequently, we will analyze the dependence of λp on the diffusion rate δ and on the length 

of the support interval, L. Our results are based on the analysis of the dependence, with respect 
to d , of the principal eigenvalue θ(d), 0 < d < ∞, of the linear eigenvalue problem

{−dw′′ + w′ = θw, 0 < x < 1,

dw′(0) − w(0) = w′(1) = 0.
(3.16)

As the change of variable w(x) := e
x

2d v(x) transforms (3.16) into

{
−dv′′ + 1

4d
v = θv, 0 < x < 1,

v′(0) − 1
2d

v(0) = 0, v′(1) + 1
2d

v(1) = 0,
(3.17)

it becomes apparent that

θ(d) = 1

4d
+ dη(d), d > 0, (3.18)

where

η(d) := σ1[−D2,B(d), (0,1)], d > 0,
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and B(d) stands for the boundary operator

B(d)v :=
{

v′(0) − (2d)−1v(0),

v′(1) + (2d)−1v(1).

As

B(d) = ∂

∂n
+ 1

2d
on ∂(0,1) = {0,1},

by [2, Prop. 3.5], or [20, Prop. 8.4], η(d) is decreasing with respect to d > 0. Moreover, by 
[2, Th. 9.1] (or [20, Th. 8.9]) and the continuous dependence of η(d) with respect to d (see, e.g., 
[2, Sect. 8]), it follows that

lim
d↓0

η(d) = π2 and lim
d↑∞η(d) = 0,

i.e., rather naturally, η(d) approximates the principal eigenvalue of the Neumann problem as 
d → ∞, whereas it approximates the principal eigenvalue of the Dirichlet problem as d → 0. In 
particular, this entails

lim
d↓0

θ(d) = ∞.

Moreover, as η(d) decreases, we have that

θ(d) = 1

4d
+ dη(d) <

1

4d
+ dη(0) = 1

4d
+ π2d, d > 0.

Proposition 2.1 of [3] sharpens the previous (rather natural) results by establishing that d �→ θ(d)

is as well decreasing and that η(d) ∼ 1/d as d → ∞. Hence,

lim
d↑∞ θ(d) = 1.

Moreover, [3, Prop. 2.1] also establishes that d �→ dθ(d) is increasing and that

1

4d
+ π2d

4
< θ(d) <

1

4d
+ π2d, if d < π/2,

though the lower estimate is not sharp, as it is only valid for sufficiently small d . More generally, 
let τ(δ, L) denote the principal eigenvalue of{−δψ ′′ + νψ ′ = τ(δ,L)ψ, 0 < x < L,

δψ ′(0) − νψ(0) = ψ ′(L) = 0.
(3.19)

As the change of variable x = Ly, w(y) = ψ(x), 0 < y < 1, transforms (3.19) into

⎧⎪⎨
⎪⎩

− δ

νL
w′′ + w′ = τ(δ,L)L

ν
w, 0 < y < 1,

δ
w′(0) − w(0) = w′(1) = 0,

(3.20)
νL
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and the principal eigenvalue is unique, thanks to the previous results, from (3.18) the next result 
holds.

Lemma 3.1. The following identities are satisfied

τ(δ,L) = ν

L
θ

(
δ

Lν

)
= ν

L

[
Lν

4δ
+ δ

Lν
η

(
δ

Lν

)]
= ν2

4δ
+ δ

L2
η

(
δ

Lν

)

for all δ > 0 and L > 0. Thus, the maps δ �→ τ(δ, L) and L �→ τ(δ, L) are decreasing. Moreover,

lim
δ↓0

τ(δ,L) = ∞ = lim
L↓0

τ(δ,L), lim
δ↑∞ τ(δ,L) = ν

L
, lim

L↑∞ τ(δ,L) = ν2

4δ
. (3.21)

The next result provides the dependence of λp = λp(δ, L) with respect to δ in the special case 
when β1 and β2 are positive constants.

Theorem 3.4. Suppose β1 > 0 and β2 > 0 are constants. Then, δ �→ λp(δ, L) is decreasing. 
Moreover,

λp(0,L) := lim
δ↓0

λp(δ,L) = λc = αQ − β2 (3.22)

and, for any δ > 0 and L > 0,

λp(δ,L) = 1

2

{
τ + λc + α − β1 −

√
(τ + λc + α − β1)2 + 4

[
α2Q + λc(β1 − α − τ)

]}
, (3.23)

where τ = τ(δ, L). Therefore, due to (3.21), the limit

λp(∞,L) := lim
δ↑∞λp(δ,L) < λc

is given through

λp(∞,L) = 1

2

{
ν

L
+ λc + α − β1 −

√( ν

L
+ λc + α − β1

)2 + 4
[
α2Q + λc(β1 − α − ν

L
)
]}

.

Proof. By definition of λp , there exists a function ψ � 0, unique up to multiplicative constants, 
such that {

−δψ ′′ + νψ ′ − β1ψ + α + α2Q
λp+β2−αQ

= λpψ, 0 < x < L,

δψ ′(0) − νψ(0) = ψ ′(L) = 0.

Thus, by the uniqueness of the principal eigenvalue, it becomes apparent that

τ(δ,L) = β1 − α + λp − α2Q = β1 − α + λp − α2Q
λp + β2 − αQ λp − λc
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or, equivalently,

(
λp + β1 − α − τ

)
(λp − λc) − α2Q = 0.

Hence, λp must be a root of the polynomial

P(λ) := (λ + β1 − α − τ) (λ − λc) − α2Q, λ ∈ R.

As P(λc) = −α2Q < 0 and λp < λc, P(λ) has two real roots λ− < λc < λ+ and λp = λ−. 
Therefore, (3.23) holds. The formula for λp(∞, L) is a by-product from (3.21) and (3.23).

To show the monotonicity of δ �→ λp(δ, L) we argue by contradiction. Suppose there are 
0 < δ1 < δ2 and L > 0 such that λp(δ1, L) ≤ λp(δ2, L). Then,

τ(δ1,L) = β1 − α + λp(δ1,L) − α2Q

λp(δ1,L) − λc

≤ β1 − α + λp(δ2,L) − α2Q

λp(δ2,L) − λc

= τ(δ2,L)

which is impossible, because δ �→ τ(δ, L) is decreasing, by Lemma 3.1.
Finally, letting δ ↓ 0 in the identity

τ(δ,L) − β1 + α − λp(δ,L) = − α2Q

λp(δ,L) − λc

(3.24)

it becomes apparent that (3.22) holds true, because τ(d, L) ↑ ∞ as δ ↓ 0. The proof is com-
plete. �

Similarly, the next result follows.

Theorem 3.5. Suppose β1 > 0 and β2 > 0 are constants. Then, L �→ λp(δ, L) is decreasing. 
Moreover,

λp(δ,0) := lim
L↓0

λp(δ,L) = λc = αQ − β2 (3.25)

and the limit

λp(δ,∞) := lim
L↑∞λp(δ,L) (3.26)

is given through

λp(δ,∞)

= 1

2

⎧⎨
⎩ν2

4δ
+ λc + α − β1 −

√(
ν2

4δ
+ λc + α − β1

)2

+ 4

[
α2Q + λc(β1 − α − ν2

4δ
)

]⎫⎬
⎭ .
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Proof. The fact that L �→ λp(δ, L) is decreasing follows as in Theorem 3.4 from the fact that 
L �→ τ(δ, L) is decreasing. Moreover, due to (3.21), we already know that limL↓0 τ(δ, L) = ∞. 
Hence, letting L ↓ 0 in (3.24) yields (3.25).

Finally, as λp(δ, L) is given by (3.23), we find from the last identity of (3.21) that λp(δ, ∞)

is the correct value of the limit (3.26). The proof is complete. �
In river ecology, one often has that ν = DL, for some constant D > 0, where L > 0 is the 

length of the habitat. Consequently, it is as well of interest to ascertain how varies the principal 
eigenvalue λp as a function of the parameter D = ν/L, or, equivalently, as a function of ν, if L
is fixed. The next result provides us with such a dependence.

Theorem 3.6. Suppose β1 > 0 and β2 > 0 are constants. Then, D �→ λp(D) is increasing,

lim
D↑∞λp(D) = λc := αQ − β2,

and

λp(0) := lim
D↓0

λp(D) = 1

2

{
λc + α − β1 −

√
(λc + α − β1)

2 + 4
[
α2Q + λc(β1 − α)

]}
.

Proof. In terms of D = ν/L, the problem (3.20) can be written in the form

⎧⎪⎨
⎪⎩

− δ

DL2
w′′ + w′ = τ(D)L

ν
w, 0 < y < 1,

δ

DL2
w′(0) − w(0) = w′(1) = 0.

Moreover, like in Theorem 3.4, we have that

τ(D) = β1 − α + λp(D) − α2Q

λp(D) − λc

(3.27)

or, equivalently,

(
λp(D) + β1 − α − τ

)
(λp(D) − λc) − α2Q = 0. (3.28)

Consequently, λp(D) must be the lowest root of the polynomial

Pτ (λ) := (λ + β1 − α − τ) (λ − λc) − α2Q, λ ∈ R,

because Pτ (λc) < 0. As τ(D) = Dθ
(

δ

DL2

)
and θ is decreasing, the map D �→ τ(D) is in-

creasing. Owing to (3.27), this implies that D �→ λp(D) is also increasing. In particular, 
λp(0) := limD↓0 λp(D) is well defined. Thanks to (3.28), λp(0) ∈ R must be the lowest root 
of P0(λ), as claimed in the statement, because τ(0) = 0. Moreover, as limD↑∞ τ(D) = ∞, it 
follows from (3.27) that limD↑∞ λp(D) = λc. The proof is complete. �
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Remark 3.1. From the proofs of Theorems 3.4 and 3.6 we can conclude that λp is an increasing 
function of L2/δ if β1 > 0 and β2 > 0 are constants. Moreover,

lim
L2/δ↑∞

λp = λc = αQ − β2 > 0; lim
L2/δ↓0+

λp = λp(0),

where λp(0) is the lowest root of

(λ − α − D + β1)(λ − αQ + β2) = α2Q,

which is less than αQ − β2.

4. An application

In this section we shall give some applications of the theory developed in Sections 2 and 3. 
We intend to incorporate the factor of vertical variation into the system in flowing habitats of [8]
to study a generalized system with light limitation. Throughout this discussion, the channel is as-
sumed to have a constant cross-sectional area A and a length L, yielding a volume V . Moreover, 
a flow of water enters at the upstream end (x = 0) with discharge F (dimensions length3/time), 
and an equal flow leaves the downstream end (x = L), which is assumed to be a dam. Based on 
this flow, the dilution rate D (dimensions time−1) is defined as F/V . Also, an advective flow 
within the channel is set to maintain the water balance, by transporting it with a net velocity 
ν = DL. The reactor occupies the portion of the channel from x = 0 to x = L, where the mi-
crobial populations Ni , i = 1, 2, compete for the nutrient R and the light I . The competition is 
assumed to be purely exploitative, in the sense that the organisms simply consume the nutrient, 
thereby making it unavailable for a competitor. A flow of medium in the channel with velocity 
ν = DL in the direction of increasing x brings fresh nutrient at a constant concentration R(0) into 
the reactor, at x = 0, and carries medium, unutilized nutrient and organisms out of the reactor, 
at x = L. The nutrient and the organisms are assumed to diffuse throughout the vessel with the 
same diffusivity δ.

These assumptions lead to the next constitutive equations describing the spatial and temporal 
evolution of the densities R(x, t), N1(x, t) and N2(x, t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂R
∂t

= δ ∂2R

∂x2 − ν ∂R
∂x

− q1f1(R)g1(I )N1 − q2f2(R)g2(I )N2 + α(RS − R),

∂N1
∂t

= δ ∂2N1
∂x2 − ν ∂N1

∂x
+ α(NS,1 − N1) + f1(R)g1(I )N1,

∂N2
∂t

= δ ∂2N2
∂x2 − ν ∂N2

∂x
+ α(NS,2 − N2) + f2(R)g2(I )N2,

∂RS

∂t
= −α A

AS
(RS − R) − q1f1(RS)g1(IS)NS,1 − q2f2(RS)g1(IS)NS,2,

∂NS,1
∂t

= −α A
AS

(NS,1 − N1) + f1(RS)g1(IS)NS,1,

∂NS,2
∂t

= −α A
AS

(NS,2 − N2) + f2(RS)g2(IS)NS,2,

(4.1)

for every (x, t) ∈ (0, L) × (0, ∞), subject to the boundary conditions

{
νR(0, t) − δ ∂R

∂x
(0, t) = νR(0), ∂R

∂x
(L, t) = 0,

νN (0, t) − δ
∂Ni (0, t) = 0,

∂Ni (L, t) = 0, i = 1,2,
t > 0, (4.2)
i ∂x ∂x
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and the initial conditions

{
R(x,0) = R0(x) ≥ 0, Ni(x,0) = N0

i (x) ≥ 0,

RS(x,0) = R0
S(x) ≥ 0, NS,i(x,0) = N0

S,i(x) ≥ 0,
0 < x < L, i = 1,2. (4.3)

The boundary conditions (4.2), referred to as the Danckwerts’ boundary conditions by Aris [1], 
are often misunderstood in the literature, though they play a crucial role in the mathematical 
analysis of the model. A detailed sharp discussion on the role of the boundary conditions (4.2)
can be found in the paper of Ballyk, Jones, and Smith [4].

In this paper, we assume that the specific growth rates fi(R) and gi(I ) satisfy

fi(0) = 0 and f ′
i (R) > 0 for all R > 0, i = 1,2, (4.4)

gi(0) = 0 and g′
i (I ) > 0 for all I > 0, i = 1,2. (4.5)

To simplify the model as much as possible, we will assume that the vertical mixing is sufficiently 
strong to homogenize organisms and nutrients, i.e., we will ignore the vertical turbulent diffusion 
and the sinking/buoyant velocity. Then, by the Lambert–Beer law (see Huisman, Oostveen and 
Weissing [12] and Kirk [16], if necessary), the light intensities I (x, t) and IS(x, t) take the form

I (x, t) = I0 e−k0zm−k1zmN1(x,t)−k2zmN2(x,t),

IS(x, t) = I0 e−k0zm−k1zmNS,1(x,t)−k2zmNS,2(x,t),

where I0 stands for the incident light intensity, zm is the river depth, k0 is the background turbid-
ity that summarizes light absorption by all non-phytoplankton components, and ki is the specific 
light attenuation coefficient of phytoplankton species i. The most common examples are the 
Monod functions, under Michaelis–Menten form,

fi(R) = μmax,iR

Kμ,i + R
and gi(I ) = miI

ai + I
, i = 1,2.

Alternatively, one might model our system replacing fi(R)gi(I ) by

mi (R, I ) := min{fi(R), gi(I )}.

This provides us with the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂R
∂t

= δ ∂2R

∂x2 − ν ∂R
∂x

− q1m1(R, I )N1 − q2m2(R, I )N2 + α(RS − R),

∂N1
∂t

= δ ∂2N1
∂x2 − ν ∂N1

∂x
+ α(NS,1 − N1) +m1(R, I )N1,

∂N2
∂t

= δ ∂2N2
∂x2 − ν ∂N2

∂x
+ α(NS,2 − N2) +m2(R, I )N2,

∂RS

∂t
= −α A

AS
(RS − R) − q1m1(RS, IS)NS,1 − q2m2(RS, IS)NS,2,

∂NS,1
∂t

= −α A
AS

(NS,1 − N1) +m1(RS, IS)NS,1,

∂NS,2 = −α A (NS,2 − N2) +m2(RS, IS)NS,2,

(4.6)
∂t AS
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in (0, L) × (0, ∞), which should be completed with the boundary conditions (4.2) and the initial 
conditions (4.3).

4.1. Dynamics of the single population model

In this section, we focus our attention on the single population model

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂R
∂t

= δ ∂2R

∂x2 − ν ∂R
∂x

− qf (R)g(I )N + α(RS − R),

∂N
∂t

= δ ∂2N

∂x2 − ν ∂N
∂x

+ α(NS − N) + f (R)g(I)N,

∂RS

∂t
= −α A

AS
(RS − R) − qf (RS)g(IS)NS,

∂NS

∂t
= −α A

AS
(NS − N) + f (RS)g(IS)NS,

(4.7)

in (0, L) × (0, ∞), under the boundary conditions

{
νR(0, t) − δ ∂R

∂x
(0, t) = νR(0), ∂R

∂x
(L, t) = 0,

νN(0, t) − δ ∂N
∂x

(0, t) = 0, ∂N
∂x

(L, t) = 0,
t > 0, (4.8)

with initial conditions{
R(x,0) = R0(x) ≥ 0, N(x,0) = N0(x) ≥ 0,

RS(x,0) = R0
S(x) ≥ 0, NS(x,0) = N0

S (x) ≥ 0,
0 < x < L. (4.9)

In this case, the light intensities I (x, t) and IS(x, t) take the form

I (x, t) = I0e
−k0zme−kzmN(x,t), IS(x, t) = I0e

−k0zme−kzmNS(x,t).

Setting

W(x, t) := R(x, t) + qN(x, t), WS(x, t) := RS(x, t) + qNS(x, t), (4.10)

for all t > 0 and 0 < x < L, it is straightforward to see that W(x, t) and WS(x, t) satisfy the 
evolution problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂W
∂t

= δ ∂2W

∂x2 − ν ∂W
∂x

+ αWS − αW,
∂WS

∂t
= −α A

AS
WS + α A

AS
W,

x ∈ (0,L), t > 0,

νW(0, t) − δ ∂W
∂x

(0, t) = νR(0), ∂W
∂x

(L, t) = 0, t > 0,

W(x,0) = W 0(x) ≥ 0, WS(x,0) = W 0
S (x), x ∈ (0,L),

(4.11)

where

W 0 := R0 + qN0, W 0
S := R0

S + qN0
S . (4.12)

Adapting the arguments of Grover, Hsu and Wang [8], as well as the proof of Lemma 2.3 of 
Hsu, Wang and Zhao [13], the next result, describing the global dynamics of (4.11), holds. It 
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is straightforward to check that 
(
R(0),R(0)

)
provides us with the unique positive steady state of 

(4.11).

Proposition 4.1. 
(
R(0),R(0)

)
is the unique positive steady-state of the evolution problem (4.11), 

and it is a global attractor, in the sense that, for any mild solution (W(x, t),WS(x, t)) of (4.11)
with 

(
W 0,W 0

S

) ∈ C([0, L], R2), one has that

lim
t↑∞‖ (W(·, t),WS(·, t)) −

(
R(0),R(0)

)
‖C([0,L];R2) = 0.

As an immediate consequence, we can conclude that the limiting evolution problem of 
(4.7)–(4.9) takes the form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂N
∂t

= δ ∂2N

∂x2 − ν ∂N
∂x

+ α(NS − N) + f (R(0) − qN)g(I0e
−k0zme−kzmN)N,

∂NS

∂t
= −α A

AS
(NS − N) + f (R(0) − qNS)g(I0e

−k0zme−kzmNS )NS,

νN(0, t) − δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t > 0,

N(x,0) = N0(x) ≥ 0, NS(x,0) = N0
S (x) ≥ 0, x ∈ (0,L),

(4.13)

for t > 0 and 0 < x < L. According to (4.10) and Proposition 4.1, it follows from (4.12) that an 
appropriate phase space for the problem (4.13) is the next one

X :=
{
(N0,N0

S ) ∈ C([0,L],R2+) | qN0 ≤ R(0), qN0
S ≤ R(0) in [0,L]

}
. (4.14)

Adapting the proof of Grover, Hsu and Wang [8, Prop. 3.1], the next result holds.

Proposition 4.2. For every 
(
N0,N0

S

) ∈ X, the evolution problem (4.13) admits a unique global 
mild solution

(N(·, t),N0(·, t)) :=
(
N
(
·, t;N0,N0

S

)
,NS

(
·, t;N0,N0

S

))
, t > 0,

such that (N(·, t),N0(·, t)) ∈ X for all t > 0. In other words, X is positively invariant by the 
semi-flow generated by (4.13), which will be subsequently denoted by �t :X → X, t > 0.

Setting

β := f (R(0))g(I0e
−k0zm) (4.15)

and linearizing the evolution problem (4.13) at the steady state (0, 0), yields the cooperative 
system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂N
∂t

= δ ∂2N

∂x2 − ν ∂N
∂x

+ α(NS − N) + βN,
∂NS

∂t
= −α A

AS
(NS − N) + βNS,

x ∈ (0,L), t > 0,

νN(0, t) − δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t > 0,

N(x,0) = N0(x) ≥ 0, N (x,0) = N0(x) ≥ 0, x ∈ (0,L).

(4.16)
S S
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Substituting

N(x, t) = e−μtψ(x), NS(x, t) = e−μtϕ(x),

in (4.16), we are driven to the associated eigenvalue problem

⎧⎪⎨
⎪⎩

−δψ ′′ + νψ ′ + αψ − βψ − αϕ = μψ,

−α A
AS

ψ +
(
α A

AS
− β

)
ϕ = μϕ,

in (0,L),

νψ(0) − δψ ′(0) = ψ ′(L) = 0.

(4.17)

According to Theorem 2.1, under condition

αA/AS > β := f (R(0))g(I0e
−k0zm), (4.18)

the eigenvalue problem (4.17) has a unique principal eigenvalue, denoted by μ0, associated with
a positive eigenvector (ψ0, ϕ0) � 0, which is unique up to a positive multiplicative constant.

In the sequel, we will set

X0 := X \ {(0,0)}.

Then,

IntX0 = { (N,N0
S ) ∈X0 : (N,NS) � 0}, ∂X0 =X0 \ IntX0.

Theorem 4.1. Suppose (4.18) holds and let μ0 denote the (unique) principal eigenvalue of (4.17). 
For any (N0, N0

S ) ∈ X, let (N(·, t), NS(·, t)) = �t(N
0, N0

S ), t > 0, be the unique mild solution 
of (4.13). Then, the following assertions are true:

(i) If μ0 > 0, then lim
t→∞(N(·, t), NS(·, t)) = (0, 0) uniformly in [0, L];

(ii) If μ0 < 0, then, the problem (4.13) admits a unique positive steady state, denoted by 
(N∗, N∗

S ), and, for every (N0, N0
S ) ∈ X0, one has that

lim
t→∞(N(·, t),NS(·, t)) = (N∗,N∗

S ) uniformly in [0,L].

Proof. Suppose μ0 > 0. Then, it follows from (4.13) that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂N
∂t

≤ δ ∂2N

∂x2 − ν ∂N
∂x

+ α(NS − N) + βN,
∂NS

∂t
≤ −α A

AS
(NS − N) + βNS,

x ∈ (0,L), t > 0,

νN(0, t) − δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t > 0,

N(x,0) = N0(x) ≥ 0, NS(x,0) = N0
S (x) ≥ 0, x ∈ (0,L).

Moreover, since (ψ0, ϕ0) � 0, for any given (N0, N0
S ) ∈ X, there is a constant a > 0 such 

that (N0, N0) ≤ a(ψ0, ϕ0) in [0, L]. As ae−μ0t (ψ0, ϕ0), t > 0, solves (4.16) with initial data 
S
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a(ψ0, ϕ0), from the parabolic maximum principle it is apparent that

(N(·, t),NS(·, t)) ≤ ae−μ0t (ψ0, ϕ0) in [0,L] for all t > 0,

which entails assertion (i).
Subsequently, we assume that μ0 < 0. Then, by Theorem 2.1, as soon as

ε0 > 0, αA/AS > β − ε0, (4.19)

the linear eigenvalue problem

⎧⎪⎨
⎪⎩

−μψ = δψ ′′ − νψ ′ + α(ϕ − ψ) + (β − ε0)ψ,

−μϕ = −α A
AS

(ϕ − ψ) + (β − ε0)ϕ,
in (0,L),

νψ(0) − δψ ′(0) = ψ ′(L) = 0,

(4.20)

possesses a unique principal eigenvalue, denoted by μ0
ε0

. According to Theorem 3.1, μ0 < με0 , 
because β − ε0 < β . Moreover, by adapting the argument of the proof of Theorem 3.3, it 
is easy to see that ε �→ με is a real analytic function. Hence, for sufficiently small ε0 > 0, 
(4.19) and μ0

ε0
< 0 hold. Let (ψ0

ε0
, ϕ0

ε0
) � 0 be an eigenfunction associated with μ0

ε0
, and pick 

(N0, N0
S ) ∈ X0. By the parabolic strong maximum principle (see Nirenberg [24], if necessary), 

(N(·, t), NS(·, t)) � 0 for all t > 0. In other words,

�t(X0) ⊆ IntX0 for all t > 0.

On the other hand, since

lim
N→0

f (R(0) − qN)g(I0e
−k0zme−kzmN) = f (R(0))g(I0e

−k0zm) = β,

lim
NS→0

f (R(0) − qNS)g(I0e
−k0zme−kzmNS ) = f (R(0))g(I0e

−k0zm) = β,

there exists σ0 > such that

f (R(0) − qN)g(I0e
−k0zme−kzmN) > β − ε0,

f (R(0) − qNS)g(I0e
−k0zme−kzmNS ) > β − ε0,

if ‖(N,NS)‖ < σ0, (4.21)

which entails

lim sup
t→∞

‖�t(N
0,N0

S ) − (0,0)‖ ≥ σ0 for all (N0,N0
S ) ∈ X0 (4.22)

and shows that (0, 0) is a uniform weak repeller for the evolution problem (4.13). Indeed, suppose 
(by contradiction) that there is (N0, N0

S ) ∈ X0 such that

lim sup‖�t(N
0,N0

S ) − (0,0)‖ < σ0. (4.23)

t→∞
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Then, if follows from (4.13) and (4.21) that there exists t0 > 0 such that

⎧⎪⎪⎨
⎪⎪⎩

∂N
∂t

≥ δ ∂2N

∂x2 − ν ∂N
∂x

+ α(NS − N) + (β − ε0)N,
∂NS

∂t
≥ −α A

AS
(NS − N) + (β − ε0)NS,

x ∈ (0,L), t ≥ t0,

νN(0, t) − δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t ≥ t0.

(4.24)

As (N0, N0
S ) ∈ X0, we have that

�t0(N
0,N0

S ) =
(
N
(
·, t0;N0,N0

S

)
,NS

(
·, t0;N0,N0

S

))
� 0 for all x ∈ [0,L]

and hence, there is a constant b > 0 such that

�t0(N
0,N0

S ) > b(ψ0
ε0

, ϕ0
ε0

) in [0,L].

Consequently, we find from the parabolic maximum principle that

�t(N
0,N0

S ) =
(
N
(
·, t;N0,N0

S

)
,NS

(
·, t;N0,N0

S

))
≥ be

−μ0
ε0

(t−t0)
(
ψ0

ε0
, ϕ0

ε0

)

in [0, L] for all t ≥ t0. Since μ0
ε0

< 0, 
(
N
(·, t;N0,N0

S

)
,NS

(·, t;N0,N0
S

))
, t > 0, is unbounded, 

which contradicts (4.23) and ends the proof of (4.22).
Subsequently, we consider the kinetics of (4.13), F := (F, FS) : R2 →R

2, with

F(N,NS) := α(NS − N) + f (R(0) − qN)g(I0e
−k0zme−kzmN)N,

FS(N,NS) := −α
A

AS

(NS − N) + f (R(0) − qNS)g(I0e
−k0zme−kzmNS )NS.

By (4.18), it is easy to see that there exists a real number r > 0 such that

∂FS(N,NS)

∂NS

≤ −r < 0 for all (N,NS) ∈
[
0,R(0)/q

]
×
[
0,R(0)/q

]
.

By Proposition 4.2, arguing as in the proof of Lemma 4.1 and Theorem 4.1 of Hsu, Wang and 
Zhao [13], it becomes apparent that the semigroup �t , t > 0, has a global compact attractor in X.

Let ρ : X → [0, ∞) be the continuous function defined by

ρ(N0,N0
S ) := min

{
min

x∈[0,L]N
0(x), min

x∈[0,L]N
0
S (x)

}
for all (N0,N0

S ) ∈X.

It is easy to see that ρ−1(0, ∞) ⊆ X0 and that ρ
(
�t(N

0,N0
S )
)

> 0 for all t > 0 if either 
ρ(N0, N0

S ) > 0 or (N0, N0
S ) ∈ X0 with ρ(N0, N0

S ) = 0. Thus, ρ is a generalized distance func-
tion for the evolution operator �t :X → X (see, e.g., Smith and Zhao [28]). From these features, 
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one can infer that the ω-limit set ω(N0, N0
S ) of any point

(N0,N0
S ) ∈ M∂ :=

{
(N0,N0

S ) ∈ ∂X0 : �t(N
0,N0

S ) ∈ ∂X0 ∀ t > 0
}

,

must be {(0, 0)}. Thus, any forward orbit of �t in M∂ converges to (0, 0), which is isolated in X, 
and Ws(0, 0) ∩X0 = ∅, where Ws(0, 0) stands for the stable manifold of (0, 0). As it is obvious 
that there is no cycle in M∂ linking (0, 0) with (0, 0), Theorem 3 of Smith and Zhao [28] shows 
that there is a constant η > 0 such that

min
Q∈ω(N0,N0

S )

ρ(Q) > η for all (N0,N0
S ) ∈X0.

Therefore, by Theorem 3.8 of Magal and Zhao [23], �t : X0 → X0 admits a global attrac-
tor A0.

On the other hand, as the Jacobian matrix of F(N, NS) is cooperative and irreducible for any 
(N, NS) ∈ [0, R(0)/q] ×[0, R(0)/q], and F(N, NS) is strongly sub-homogeneous in [0, R(0)/q] ×
[0, R(0)/q], in the sense that

F(τN, τNS) � τF(N,NS)

for all τ ∈ (0, 1) and (N, NS) ∈ (0, R(0)/q] × (0, R(0)/q], the evolution operator �t : X → X

is a strongly monotone and strictly sub-homogeneous semi-flow in X (see, e.g., Section 2.3 of 
Zhao [30]). As A0 ⊂ X0 and A0 = �t(A0) for all t > 0, necessarily A0 ⊂ Int

(
C
([0,L],R2+

))
. 

Therefore, applying Theorem 2.3.2 of [30] with K = A0, it becomes apparent that A0 consists 
of a single point (N∗, N∗

S ) � 0. This ends the proof of part (ii). �
Remark 4.1. By Theorem 4.1 and the method of chain transitive sets (see, e.g., Section 1.2 of 
Zhao [30]), one can also derive a threshold type result on the global dynamics of the single 
species model (4.7)–(4.9).

4.2. Dynamics of the two-populations model

This section analyzes the dynamics of the evolution problem (4.1)–(4.3). Setting

W(x, t) := R(x, t) + q1N1(x, t) + q2N2(x, t),

WS(x, t) := RS(x, t) + q1NS,1(x, t) + q2NS,2(x, t),

and substituting in (4.1)–(4.3), it becomes apparent that (W, WS) solves (4.11). Thus, due to 
Lemma 4.1, (W(·, 0), WS(·, 0)) ∈ C([0, L], R2) implies

lim (W(·, t),WS(·, t)) = (R(0),R(0)) uniformly in [0,L].

t→∞
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Consequently, the limiting system of (4.1)–(4.3) takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N1
∂t

= δ ∂2N1
∂x2 − ν ∂N1

∂x
+ α(NS,1 − N1)

+ f1(R
(0) − q1N1 − q2N2)g(I0e

−k0zme−k1zmN1e−k2zmN2)N1,
∂NS,1

∂t
= −α A

AS
(NS,1 − N1)

+ f1(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)NS,1,

∂N2
∂t

= δ ∂2N2
∂x2 − ν ∂N2

∂x
+ α(NS,2 − N2)

+ f2(R
(0) − q1N1 − q2N2)g(I0e

−k0zme−k1zmN1e−k2zmN2)N2,
∂NS,2

∂t
= −α A

AS
(NS,2 − N2)

+ f2(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)NS,2,

(4.25)

in (x, t) ∈ (0, L) × (0, ∞), with boundary and initial conditions

{
νNi(0, t) − δ

∂Ni

∂x
(0, t) = ∂Ni

∂x
(L, t) = 0, t > 0,

Ni(x,0) = N0
i (x) ≥ 0, NS,i(x,0) = N0

S,i (x) ≥ 0, 0 < x < L,
i = 1,2. (4.26)

From the biological point of view, the natural phase space for (4.25)–(4.26) is

Y :=
{

(N0
1 ,N0

S,1,N
0
2 ,N0

S,2) ∈ C([0,L],R4+) :
{

q1N
0
1 + q2N

0
2 ≤ R(0),

q1N
0
S,1 + q2N

0
S,2 ≤ R(0),

in [0,L]
}

.

The next result can be proved by similar arguments as in Proposition 3.1 of Grover, Hsu and 
Wang [8].

Proposition 4.3. For every P :=
(
N0

1 ,N0
S,1,N

0
2 ,N0

S,2

)
∈Y, the evolution problem (4.25)–(4.26)

admits a unique global mild solution

(
N1(·, t;P),NS,1(·, t;P),N2(·, t;P),NS,2(·, t;P)

)
, t > 0,

such that

(
N1(·, t;P),NS,1(·, t;P),N2(·, t;P),NS,2(·, t;P)

) ∈Y

for all t > 0. In other words, the phase space Y is positively invariant under the semi-flow
generated by the problem (4.25)–(4.26).

Naturally, Theorem 4.1 can be applied to each of the two sub-systems obtained from 
(4.25)–(4.26) by setting to (0, 0) any of the two ordered pairs (N1, NS,1), or (N2, NS,2). Sup-
pose

α
A

> βi := fi(R
(0))g(I0e

−k0zm), i = 1,2. (4.27)

AS
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Then, owing to Theorem 2.1, the problem (4.17) with β = βi , i = 1, 2, possesses a unique prin-
cipal eigenvalue μ0

i , and we can conclude that the problem (4.25)–(4.26) admits the following 
types of steady states:

(a) The trivial solution 0̂ := (0, 0, 0, 0), which exists always;
(b) The semi-trivial solution E1 := (N∗

1 , N∗
S,1, 0, 0), which exists if, and only if, μ0

1 < 0;

(c) The semi-trivial solution E2 := (0, 0, N∗
2 , N∗

S,2), which exists if, and only if, μ0
2 < 0;

(d) The coexistence states, which are solutions with the four components positive, whose exis-
tence is not guaranteed yet.

Here, we are denoting by (N∗
i , N∗

S,i ) the unique positive steady-state solution of (4.13) with 
f = fi , q = qi and k = ki , i = 1, 2. The two organisms can coexist if a coexistence state exists.

Linearizing the problem (4.25)–(4.26) at the steady state E1 := (N∗
1 , N∗

S,1, 0, 0), one gets the 
following cooperative system that is decoupled from the remaining equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂N2
∂t

= δ ∂2N2
∂x2 − ν ∂N2

∂x
+ α(NS,2 − N2) + f2(R

(0) − q1N
∗
1 )g(I0e

−k0zme−k1zmN∗
1 )N2,

∂NS,2
∂t

= −α A
AS

(NS,2 − N2) + f2(R
(0) − q1N

∗
S,1)g(I0e

−k0zme
−k1zmN∗

S,1)NS,2,

νN2(0, t) − δ ∂N2
∂x

(0, t) = ∂N2
∂x

(L, t) = 0, t > 0,

N2(x,0) = N0
2 (x) ≥ 0, NS,2(x,0) = N0

S,2(x) ≥ 0, x ∈ (0,L),

in (x, t) ∈ (0, L) × (0, ∞). Thus, setting

β1,1(x) := f2(R
(0) − q1N

∗
1 (x))g(I0e

−k0zme−k1zmN∗
1 (x))

β1,2(x) := f2(R
(0) − q1N

∗
S,1(x))g(I0e

−k0zme
−k1zmN∗

S,1(x)
)

for every x ∈ (0, L), and substituting N2(x, t) = e−�1tψ(x) and NS,2(x, t) = e−�1t ϕ(x) into the 
previous linearized problem, one obtains the associated eigenvalue problem

⎧⎪⎨
⎪⎩

−δψ ′′ + νψ ′ + αψ − β1,1(x)ψ − αϕ = �1ψ,

−α A
AS

ψ +
(
α A

AS
− β1,2(x)

)
ϕ = �1ϕ,

in (0,L),

νψ(0) − δψ ′(0) = ψ ′(L) = 0.

(4.28)

According to Theorem 2.1, the linear eigenvalue problem (4.28) has a principal eigenvalue, de-
noted by �0

1, provided that

α
A

AS

> f2(R
(0) − q1N

∗
S,1(x))g(I0e

−k0zme
−k1zmN∗

S,1(x)
) for all x ∈ [0,L]. (4.29)

Similarly, linearizing the problem (4.25)–(4.26) at the steady state solution E2 := (0, 0, N∗
2 , N∗

S,2), 
one is driven to the next cooperative system, which is uncoupled with respect to the remaining 
equations
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂N1
∂t

= δ ∂2N1
∂x2 − ν ∂N1

∂x
+ α(NS,1 − N1) + f1(R

(0) − q2N
∗
2 )g(I0e

−k0zme−k2zmN∗
2 )N1,

∂NS,1
∂t

= −α A
AS

(NS,1 − N1) + f1(R
(0) − q2N

∗
S,2)g(I0e

−k0zme
−k2zmN∗

S,2)NS,1,

νN1(0, t) − δ ∂N1
∂x

(0, t) = ∂N1
∂x

(L, t) = 0, t > 0,

N1(x,0) = N0
1 (x) ≥ 0, NS,1(x,0) = N0

S,1(x) ≥ 0, x ∈ (0,L).

Thus, setting

β2,1(x) := f1(R
(0) − q2N

∗
2 (x))g(I0e

−k0zme−k2zmN∗
2 (x))

β2,2(x) := f1(R
(0) − q2N

∗
S,2(x))g(I0e

−k0zme
−k2zmN∗

S,2(x)
)

for every x ∈ (0, L), and substituting N1(x, t) = e−�2tψ(x) and NS,1(x, t) = e−�2t ϕ(x) into the 
previous linearized problem, one gets

⎧⎪⎨
⎪⎩

−δψ ′′ + νψ ′ + αψ − β2,1(x)ψ − αϕ = �2ψ,

−α A
AS

ψ +
(
α A

AS
− β2,2(x)

)
ϕ = �2ϕ,

in (0,L),

νψ(0) − δψ ′(0) = ψ ′(L) = 0.

(4.30)

By Theorem 2.1, the eigenvalue problem (4.30) has a principal eigenvalue, denoted by �0
2, pro-

vided that

α
A

AS

> f1(R
(0) − q2N

∗
S,2(x))g(I0e

−k0zme
−k2zmN∗

S,2(x)
) for all [0,L]. (4.31)

Remark 4.2. It should be noted that:

(i) The conditions (4.27) imply (4.29) and (4.31);
(ii) Thanks to Theorem 3.1, �0

1 > μ0
2 and �0

2 > μ0
1.

As two of the differential equations of the evolution problem (4.25)–(4.26) have no diffusion 
terms, its associated semi-flow �t , t > 0, is not compact. Let

H1(N1,NS,1,N2,NS,2) and H2(N1,NS,1,N2,NS,2)

denote the reaction terms of the second and fourth equations of system (4.25), respec-
tively. Subsequently, we will impose that there is a constant r > 0 such that, for every 
(N1, NS,1, N2, NS,2) ∈ Y,

xT M(N1,NS,1,N2,NS,2)x ≤ −r xT x for all x ∈R
2, (4.32)

where

M(N1,NS,1,N2,NS,2) :=
(

m11 m12
m21 m22

)
,

with
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m11 := ∂H1(N1,NS,1,N2,NS,2)

∂NS,1

= −α
A

AS

+ f1(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)

+ ∂[f1(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)]
∂NS,1

NS,1,

m21 := ∂H2(N1,NS,1,N2,NS,2)

∂NS,1

= ∂[f2(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)]
∂NS,1

NS,2,

m12 = ∂H1(N1,NS,1,N2,NS,2)

∂NS,2

= ∂[f1(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)]
∂NS,2

NS,1,

m22 := ∂H2(N1,NS,1,N2,NS,2)

∂NS,2

= −α
A

AS

+ f2(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)

+ ∂[f2(R
(0) − q1NS,1 − q2NS,2)g(I0e

−k0zme−k1zmNS,1e−k2zmNS,2)]
∂NS,2

NS,2.

Remark 4.3. It is easy to see that (4.32) holds for sufficiently large αA/AS .

Consider the cone K := C([0, L], R2+) × (−C([0, L], R2+)) and denote by ≤K its induced or-
der. Then, by the parabolic maximum principle, the Poincaré map �t : Y → Y, t > 0, generated 
by (4.25)–(4.26) is monotone with respect to the partial order ≤K , as discussed by Smith [27].

As usual, for any given P1, P2 ∈ Y with P1 ≤K P2, we define the K-order interval

[P1,P2]K := {P ∈ Y : P1 ≤K P ≤K P2} ,

and consider the subsets of the phase space

Y0 := {(N1,NS,1,N2,NS,2) ∈ Y : (Nj ,NS,j ) �= (0,0), j = 1,2
}

and ∂Y0 := Y0 \ IntY0. The main result of this section reads as follows.

Theorem 4.2. Suppose (4.27) and (4.32) hold. Then, the following assertions are true:

(i) If �0
i < 0, i = 1, 2, then, the problem (4.25)–(4.26) admits a minimal coexistence state and 

a maximal coexistence state, with respect to the order ≤K ,

E− := (N ,N ,N2,NS,2) ≤K E+ := (N1,NS,1,N ,N ),
1 S,1 2 S,2
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such that

lim
t→∞d

(
�t(P ), [E−,E+]K

)= 0 for all P ∈Y0.

(ii) If μ0
i > 0 and �0

i > 0, i = 1, 2, then, the problem (4.25)–(4.26) admits, at least, one coexis-
tence state in Y.

Proof. By (4.32), adapting the arguments of the proof of Theorem 4.1 of Hsu, Wang and Zhao, it 
is apparent that �t admits a global attractor on Y. Moreover, it is easy to see that the semi-trivial 
steady states E1 and E2 of (4.25)–(4.26) both exist and are linearly unstable if �0

i < 0, i = 1, 2, 
whereas both are locally asymptotically stable if μ0

i > 0 and �0
i > 0, i = 1, 2. Theorem B and 

Corollary 1 of Hsu, Smith and Waltman complete the proof. �
Remark 4.4. By Theorem 4.2 and the method of chain transitive sets, as illustrated in Section 5 
of Hsu, Wang and Zhao [13], one can lift the dynamics of the problem (4.25)–(4.26) to the full 
system (4.1)–(4.3).

Actually, as discussed by Hess [11] for the classical periodic–parabolic Lotka–Volterra mod-
els, in case (i) of Theorem 4.2 the problem is compressive. Moreover, as for each i = 1, 2, the 
semi-trivial positive steady state Ei is linearly asymptotically stable if, and only if, �0

i > 0 and 
linearly unstable if, and only if, �0

i < 0, one can easily adapt the techniques of Eilbeck et al. [6]
and Furter and López-Gómez [7] to construct examples where one of the semi-trivial solutions, 
e.g., E1, is linearly asymptotically stable, while E2 is linearly unstable. In such cases, according 
to the fixed point index calculations of López-Gómez [18] and Theorem 5.1 of López-Gómez 
and Sabina de Lis [22], it is well known that the problem must exhibit at least two coexistence 
states. Actually, one of them should be linearly stable, the minimal one, while some other must 
be linearly unstable. In these situations, the problem should admit an even number of coexistence 
states, at least generically.

5. Discussion

This paper has analyzed the competition between two microbial species in a flow-reactor 
habitat in the general case when the growth of the species depends on nutrients and light. The 
mathematical model consists of a system of partial differential equations coupled with a system 
of ordinary differential equations, which extends a previous model introduced by Grover, Hsu 
and Wang [8], where the light factor was not incorporated into the model setting.

Essentially, the mathematical analysis of this paper is divided in three parts. First, we have 
established the existence and uniqueness of the principal eigenvalue for a certain linear eigen-
value problem whose sign determines whether or not the trivial solution of the single species 
model is linearly asymptotically stable. It turns out that the sign of the principal eigenvalue is 
pivotal to ascertain the dynamics of these models. Then, we have analyzed exhaustively the de-
pendence of the principal eigenvalue with respect to the most significative parameters involved in 
the formulation of the single species model. Finally, we have characterized the dynamics of the 
single species model through the sign of the principal eigenvalue of the linearization at the triv-
ial solutions, and have established the existence of coexistence states in the competing species 
model through the sign of the principal eigenvalues of the semi-trivial solutions of the model. 
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It turns out that the model possesses a coexistence state if both semi-trivial states are linearly 
unstable, or both are linearly stable, and that the species are permanent if both semi-trivial states 
are linearly unstable (see Theorem 4.2). In order to establish these results we have assumed the 
general reproductive rate to be given through the product of an increasing function of the nutrient 
concentration with another increasing function of the light intensity. As far as concerns with the 
single phytoplankton species dynamics, we have established that the species is permanent if, and 
only if, the trivial solution is linearly unstable, which can be measured through the sign of the 
principal eigenvalue of its linearization (see Theorem 4.1).

In flow-reactor habitats, the development of longitudinal patterns for the steady states on flow 
conditions is often determined from the dimensionless Péclet number, Pe := DL2/δ (see, e.g., 
Grover et al. [9]). For higher critical values of the Péclet number, algal populations were predicted 
to be washed out by rapid flow. According to the analysis carried out in this paper, it also becomes 
apparent how the persistence of the single species depends on the transport characteristics of the 
habitat, measured by the diffusivity δ and the advection ν, as well as on the exchanging rate 
between the main channel and the storage zone, measured by α.

According to Theorems 3.1, 3.4 and 3.5, the principal eigenvalue μ0 of the linearized system 
at the trivial solution is decreasing with respect to δ, α and the reproductive rate of the species, 
while it is increasing with respect to ν := DL, D, L and the ratio A/AS . As a by-product, thanks 
to Theorem 4.1, it becomes apparent that the following situations will indeed facilitate the per-
sistence of planktonic algae in flowing habitats: the larger δ, the larger α, the larger reproductive 
rate, the smaller D, the smaller L and the smaller A/AS .

This paper has also determined the asymptotic behavior of the principal eigenvalue μ0 for 
sufficiently large and sufficiently small positive parameters. Our results enable us to ascertain, 
for example, the critical diffusion rate, the critical advection rate and the critical habitat length. 
Indeed, one can determine the critical size of the diffusion rate δc, or the critical habitat length Lc, 
or the critical dilution rate Dc, so that the phytoplankton is driven to extinction if L > Lc, D >

Dc, or δ < δc (see Theorems 3.4, 3.5 and 3.6).
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